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Abstract

A novel dual-field time-domain finite-element domain-decomposition method is presented for an efficient and broad-
band numerical simulation of electromagnetic properties of large finite arrays. Instead of treating the entire array as a sin-
gle computation domain, the method considers each array element as a smaller subdomain and computes both the electric
and magnetic fields inside each subdomain. Adjacent subdomains are related to each other by the equivalent surface cur-
rents on the subdomain interfaces in an explicit manner. Furthermore, the method exploits the identical geometry of the
array elements and further reduces the memory requirement and CPU time. The proposed method is highly efficient for the
simulation of large finite arrays. Numerical stability and computational performance of the method are discussed. Several
radiation examples are presented to demonstrate the accuracy and efficiency of the method.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Large array structures have many scientific and engineering applications. For example, large antenna
arrays are often formed to simulate a large effective antenna aperture, which results in a sharpened beam pat-
tern and improved scan performance. In remote sensing, these large antenna arrays are used to achieve higher
image resolutions. As another example, the photonic bandgap (PBG) structures have inspired great interests
and found many applications in optics. Periodic dielectric structures are used to form resonant cavities and
waveguides for optical light. Numerical simulation of large arrays has been considered challenging because
of the tremendous computational resources it demands. Simulation of very large arrays can be made relatively
simple by assuming the array is infinitely periodic. Under this assumption, the numerical analysis can be con-
fined to a single unit cell by imposing appropriate periodic boundary condition and periodic radiation bound-
ary condition. Such boundary conditions have been developed in both the frequency domain [1,2] and time
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domain [3,4]. On the other hand, a faithful modeling of the finite array structure, although considered chal-
lenging, is still necessary in many applications. Such a modeling using the conventional methods often results
in linear systems of millions of unknowns, requiring huge amount of memory and floating-point operations. In
the attempts to model large finite arrays more efficiently, various fast algorithms have been developed. Among
these algorithms, the most notable ones are the array decomposition method [5], the fast spectral domain algo-
rithm [6], the characteristic basis function method [7], and the domain decomposition methods [8,9].

Recent developments in the time-domain finite-element method (TDFEM) have made it a powerful and
versatile numerical technique for simulating a variety of complicated electromagnetic problems [10–18]. A
conventional TDFEM solves the second-order vector wave equations using Galerkin’s method [11]. Then a
Newmark-beta method [19] is usually applied to obtain an unconditionally stable time-marching system. This
method is also referred to as the implicit TDFEM, since a linear system of equations needs to be solved at each
time step. As expected, this method is typically associated with relatively high computational complexity,
which has significantly limited its capability of solving large-scale electromagnetic problems, especially the
simulation of large finite arrays. In order to minimize the total CPU time, solving the linear system using a
direct solver is preferable since the factorization can be reused at each time step. For large problems, however,
the memory storage required by a direct solver becomes impractically large, even for the factorization of a
sparse matrix resulting from an FEM discretization. As a result, an implicit TDFEM often resorts to an iter-
ative solver for large problems to avoid excessive memory usage. However, the convergence of an iterative
solver heavily depends on the properties of the matrix and the preconditioner it employs. An alternative
approach to solving large-scale problems is to divide the original computation domain into several smaller
subdomains. With a reduced size, each smaller subdomain problem can then be factorized and solved using
a sparse direct solver and the overall computational complexity can be reduced as compared to the original
single-domain problem. To further reduce the computation time, the subdomain problems can be distributed
on a massively parallel computing system and solved in parallel. Therefore, an efficient domain-decomposition
method together with the TDFEM provides a promising solution to the modeling of large finite arrays.

Recently, a domain-decomposition method referred to as the finite-element tearing and interconnecting
(FETI) method has been developed [20,21]. It uses Lagrange multipliers to enforce the interface continuity
condition and to formulate a reduced-order global problem. The method was recently extended to solve Max-
well’s equations in the frequency domain [22,23] and time domain [24]. In the FETI method, the global prob-
lem is usually solved by an iterative solver, whose convergence depends on the shape and size of the
subdomains and the total number of subdomains [21,25]. Furthermore, in a time-domain simulation, the local
matrices for subdomain problems need to be factorized only once at the beginning of the computation, while
the global problem has to be solved repeatedly using an iterative solver at each time step. As a result, the solu-
tion of the global problem can easily become the bottleneck of the entire computation. More recently, a novel
domain-decomposition scheme that does not require solving a global problem has been proposed [26]. The
method, which has been referred to as the dual-field domain-decomposition (DFDD) TDFEM, solves the
dual-field second-order vector wave equations in each subdomain and relates the adjacent subdomains explic-
itly using the equivalent surface currents on the subdomain interfaces. Since adjacent subdomains are explic-
itly related at each time step, no global interface problem needs to be formulated and solved.

In this paper, we propose using the DFDD–TDFEM for the efficient modeling of large finite arrays. In an
array problem, each array element is conveniently considered as a subdomain. The size of a single array ele-
ment is usually small enough such that each subdoamin FEM system is small enough to be solved by a sparse
direct solver. By doing so, the system matrix for each subdomain can be pre-factorized and stored in the mem-
ory before time marching. At each time step, each subdomain problem is solved efficiently using its local pre-
factorized matrix. The method further exploits the fact that most array elements have identical geometries and
consequently identical subdomain matrices need to be factorized only once. This leads to a significant reduc-
tion in the memory requirement and factorization CPU time when the array size is large.

In the following sections, we first present the formulation of the DFDD–TDFEM. Next, a specialized
DFDD array solver for the modeling of large finite arrays is described, and is followed by a numerical stability
analysis. Finally, several numerical examples are presented and the computational performance of the method
is compared with the conventional TDFEM.
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2. Dual-field domain decomposition

The formulation of the DFDD–TDFEM is derived in this section. A computation domain consisting of
two subdomains is considered first for the illustrative purpose. Arbitrary partitioning of the computation
domain can be handled in the same fashion.

Fig. 1 shows a general computation domain V bounded by a metallic surface SM and an impedance surface
SA. An arbitrary artificial boundary SB breaks V into two subdomains V1 and V2. The electric and magnetic
fields in subdomain Vm are denoted respectively as Em and Hm where m = 1, 2. It can be shown that E1 and H2

satisfy the following second-order wave equations:
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where Ji1 and Ji2 denote the interior excitation in V1 and V2, respectively. The boundary conditions for the
metallic surface SM are
n̂� E ¼ 0 ð3Þ
n̂� ðr �HÞ ¼ 0 ð4Þ
and the boundary conditions for the impedance surface SA are
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where ce and ch are related to the surface impedance. Testing (1) and (2) with a vector basis function Ni and
integrating over V1 and V2 respectively yields the weak-form wave equations
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Fig. 1. Domain decomposition with two subdomains.
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On SA, we impose the first-order absorbing boundary conditions (ABC) by enforcing (5) and (6) and setting
ce ¼ Y ¼

ffiffiffiffiffiffiffi
�=l

p
and ch ¼ Z ¼

ffiffiffiffiffiffiffi
l=�

p
. On the interface SB, E1 and H2 are, according to Maxwell’s equations

and the field continuity conditions, related by
n̂� 1
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n̂� 1

�r
r�H2 ¼ �0n̂� oE1

ot
þ r
�r

n̂� E1 on SB: ð10Þ
For simplicity, we introduce the equivalent surface currents
Js ¼ n̂�H2 on SB ð11Þ
Ms ¼ �n̂� E1 on SB: ð12Þ
Using the notations for the equivalent surface currents, (7) and (8) can be rewritten as
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Next, both E1 and H2 are expanded using the vector basis function Ni. After standard spatial discretization
procedures, (13) and (14) can be written in the following matrix form:
½Se�fe1g þ
1

c2
0

½Me�
o2fe1g

ot2
þ 1

c0

½Be�
ofe1g

ot
þ 1

c0

½Ae�
ofe1g

ot
¼ � 1

c0

off g
ot
þ 1

c0

ofjg
ot

ð15Þ

½Sh�fh2g þ
1

c2
0

½Mh�
o2fh2g

ot2
þ 1

c0

½Bh�
ofh2g

ot
þ 1

c0

½Ah�
ofh2g

ot
¼ fgg þ 1

c0

ofmg
ot
þ f~mg ð16Þ
where the matrix entries are given by
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Note that the electric field in subdomain V1 and the magnetic field in subdomain V2 are related to each other
through the equivalent surface currents on the interface. Therefore, (15) and (16) form a pair of coupled equa-
tions that can be used to solve for the fields in both subdomains.

To construct a valid time-marching scheme, we sample the electric field on integer time indices n = 0, 1,
2, . . . ,N and the magnetic field on half integer time indices n ¼ 1

2
; 3

2
; 5

2
; . . . ; 2Nþ1

2
, similar to the finite-difference

time-domain (FDTD) method. Inside each subdomain, however, the Newmark-beta method is used for tem-
poral discretization. This results in the following time-marching system:
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According to (30) and (31), each time step in the time marching consists of two substeps. In the first sub-
step, the electric field at time index n + 1 is updated using the electric field at previous time indices (n and
n � 1) and the electric current on the interface at previous time indices (nþ 1

2
and n� 1

2
). In the second substep,

the magnetic field at time index nþ 3
2

is updated using the magnetic field at previous time indices (nþ 1
2

and
n� 1

2
) and the magnetic current on the interface at previous time indices (n + 1 and n). At the end of the second

substep, the time indices are incremented by one for all the quantities in (30) and (31) and the same procedures
are repeated at the next time step.

The above time-marching system is derived from the coupled equations for E1 and H2. Note that a similar
pair of coupled equations relating E2 and H1 also exists. Either one of the them can be used to solve for the
primary fields in the two subdomains and then the dual fields can be obtained from Maxwell’s equations.
However, this is only applicable to the two-subdomain case. For a general multiple-subdomain scenario, it
is necessary to solve for both the electric and magnetic fields in each subdomain. Suppose that the computa-
tion domain is divided into M non-overlapping subdomains Vm (m = 1,2, . . . ,M). Then the electric field Em

and magnetic field Hm in subdomain Vm satisfy
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The same discretization scheme as described earlier can be employed, which leads to matrix equations similar to
(15) and (16). Assuming that Vm has Lm neighbors and thus Lm interfaces, then (27)–(29) need to be modified as:
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where
Js ¼ n̂�Hml on SB ð37Þ
Ms ¼ �n̂� Eml on SB ð38Þ
where ml denotes the subdomain that is connected to subdomain m through interface l. Note that in (34)–(36)
the equivalent surface currents are always evaluated using the electromagnetic fields in the neighboring sub-
domains, as similar to the two-subdomain case.

3. DFDD array solver

In the array configurations where all the array elements have identical geometries, the entire array can be
characterized sufficiently by a single element, which is typically referred to as the unit cell. The repetition of the
geometry can be exploited in the numerical simulation and a better efficiency can be achieved. In the special-
ized DFDD array algorithm, each array element is considered as an individual subdomain and identical spa-
tial discretizations are applied to all of them except for the array elements sitting on the edges and corners of
the array. As a result, the FEM system matrices for all subdomains are the same except for the corner and edge
elements. For identical subdomains, the system matrix only has to be generated and factorized once. For large
arrays, this algorithm can lead to a significant reduction in the total memory usage and factorization time.

Fig. 2 shows the partition of a typical two-dimensional array into a central region, four edge regions, and
four corner regions. Due to the enforcement of exterior boundary conditions such as the ABC and the per-
fectly matched layers (PML), the elements in the edge regions and corner regions are in general different from
those in the central region. Inside each region, however, all the array elements are identical to one another.
Therefore, the entire array can be represented sufficiently by nine unit cells, which are denoted as unit cells
I–IX in Fig. 2. Note that the separate treatment of the corner and edge elements is actually an advantage,
rather than a disadvantage because it provides a great flexibility for the engineering design of finite arrays.

Since all the array elements are replicas of the nine unit cells, the FEM mesh only needs to be created for the
nine unit cells. In order to enforce the field continuity on the interface, however, surface meshes on the oppo-
site sides of the unit cell have to be identical, although this requirement can be relaxed with a modification of
the algorithm. For each of the nine unit cells (subdomains), an FEM matrix is assembled, factorized, and
stored in memory in the preprocessing stage. During the time marching, each of the array elements is updated
using the appropriate factorized matrix according to its position in the array. Thus, this algorithm requires to
store only nine factorized matrices regardless of the actual size of the array. Considering that matrix factor-
ization typically dominates the memory consumption, a significant reduction in the memory requirement can
be achieved by using this specialized array solver, especially for large arrays. The same argument can be made
for the factorization time. The solving time, however, remains unaffected. Although the system matrices are
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the same for subdomains with identical geometries, the unknown coefficients for these subdomains are all dif-
ferent. Consequently, the solving time is not reduced by the array algorithm.

4. Stability analysis

It has been shown that an implicit TDFEM system employing the Newmark-beta method with b P 1/4 is
unconditionally stable [11]. This means that the time step can be chosen independent of the spatial discretiza-
tion. In the DFDD–TDFEM, the Newmark-beta method is invoked inside each subdomain. On the subdo-
main interfaces, however, an explicit updating scheme is employed. Consequently, the entire scheme
becomes conditionally stable. To derive the stability condition for the DFDD–TDFEM, we again consider
the simplest case where the computation domain contains only two subdomains V1 and V2. Further, we set
b = 1/4 in (30) and (31) in our stability analysis and ignore the lossy and excitation terms in (30) and (31),
since these terms will not affect the stability criteria. After these simplifications, (30) and (31) become
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where matrices [P] and [Q] are given by
P ði; jÞ ¼
Z Z
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ðn̂�NiÞ � ðn̂� n̂�NjÞdS ð41Þ

Qði; jÞ ¼ �
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Following the standard approach, we assume a plane-wave solution
E1ðn; rÞ ¼ E1ðrÞejxnDt ð43Þ
H2ðn; rÞ ¼ H2ðrÞejxnDt: ð44Þ
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On substituting in (43) and (44), (39) and (40) are reduced to
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Defining a combined field vector fvg ¼ ½fe1g=
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we can write (45) and (46) in a compact format as
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2
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where [K] = [M]�1[S] and [L] = [M]�1[T]. Denote the eigenvalues of [K] and [L] as kK and kL, respectively. It
can be easily seen from (41) and (42) that [P] and [Q] satisfy [P] = �[Q]T. Therefore, [T] is an anti-symmetric
matrix. Given that [M] is a positive definite and symmetric matrix and [S] is a symmetric matrix, it follows that
kK has to be purely real and kL has to be purely imaginary. From (48), it can be shown that kK and kL satisfy
1
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0Dt2cot2 xDt
2

kK �
j
2

c0Dt csc
xDt

2
kL ¼ 1: ð49Þ
In order for x to be real for arbitrary kK and kL, (49) requires that
1
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Therefore, the stability condition is given by
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2

c0

1

jkLjmax

¼ 2

c0

1

qð½L�Þ ð52Þ
where q(Æ) stands for the spectral radius of (Æ). The above analysis indicates that the updating system rep-
resented by (39) and (40) is conditionally stable and the stability condition is determined by the spectral
property of the matrix [L] = [M]�1[T]. It is worth noting that both [P] and [Q] are highly sparse matrices
whose entries are zero except for those associated with the degrees of freedom on the interface SB. Thus,
matrices [T] and [L] are also highly sparse matrices. By using the properties of the FEM matrices, it can
be shown [27] that matrix [L] depends only on the spatial discretization immediately next to the interface.
For example, if a three-dimensional (3D) tetrahedral mesh is employed, the stability condition depends
only on the tetrahedrons immediately connected to the interface. Note that such a stability condition is
less stringent than that of the FDTD method or the explicit TDFEM where the time step is determined
by the smallest geometry/discretization in the entire computation domain. In the array simulations, small
geometrical features, such as the antenna feeds, are usually contained inside each subdomain and the spa-
tial discretization on the subdomain interfaces is relatively sparse and well-behaved. In such cases, the sta-
bility condition of the DFDD–TDFEM will be much more relaxed than that of the FDTD method or the
explicit TDFEM.

To validate the stability condition (52), a 1D wave propagation problem is simulated using the DFDD–
TDFEM. The 1D computation domain is 0.32 m in length and divided into two subdomains. In the first
simulation, we employ a uniform mesh with mesh size h0 = 0.01 m throughout the entire computation
domain. In the second simulation, we employ a non-uniform mesh with h(x) = a(x)h0 where a decreases
linearly from 1.0 at the interface to 0.06 at the two ends of the computation domain. In both cases, linear
basis functions are used on each cell. The spectral radius of matrix [L] and the calculated stability thresh-
old Dtmax are shown in Table 1. The stability condition for the uniform and non-uniform discretizations



Table 1
Comparison of the stability conditions for a uniform and non-uniform 1D mesh

Discretization q([L]) Dtmax ¼ 2
c0qð½L�Þ Numerical tests

Stable Unstable

Uniform 346.4 m�1 19.3 ps Dt = 19.0 ps Dt = 20.0 ps
Non-uniform 348.2 m�1 19.3 ps Dt = 19.0 ps Dt = 20.0 ps
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are found to be almost identical to each other since both of them have the same mesh size at the interface.
It is also observed that in both cases the theoretical predictions are consistent with numerical simulation
results.

For 3D problems, the spectral property of [L] depends on both the shape and dimensions of the elements
and the properties of the basis functions employed. For an equilateral tetrahedron with a side length of h, the
calculated stability condition is Dt < 0.3h/c when the lowest-order basis functions are used. Through proper
scaling, the stability condition for an arbitrary interface mesh can be estimated. A similar estimation can
be made when higher-order basis functions are used.

5. Numerical examples

In this section, we consider several radiation problems to demonstrate the accuracy and efficiency of the
DFDD–TDFEM. In all the examples, the excitation is a modulated Gaussian pulse with a central frequency
located at the center of the band of interest. The open free space is terminated using the first-order ABC for
efficiency. For a better absorbing performance, the PML can be used. It can be shown that the PML, when
considered as anisotropic material layers, can be incorporated into the DFDD–TDFEM formulation in a
straightforward manner.

5.1. Monopole array

We first consider a finite monopole array radiating over an infinite ground plane. The unit cell configura-
tion of the monopole is shown in Fig. 3a. The monopole is formed by extending the central conductor of the
coaxial cable 10 cm above the ground plane. The coaxial cable has an inner radius of 1 cm and an outer radius
of 2.3 cm. First, a 10 · 1 one-dimensional array, which is sketched in Fig. 3b, is considered. The separation
between adjacent array elements is 10 cm. The coaxial ports are excited simultaneously with a zero phase pro-
gression. The incident pulse is a modulated Gaussian pulse with central frequency f0 = 750 MHz. In the
DFDD–TDFEM simulation, the entire computation domain is partitioned into 36 subdomains. Each subdo-
main is in turn discretized into approximately 4000 tetrahedron elements and hierarchical basis functions of
mixed-second order [28] are used for field expansion. The resultant number of unknowns is approximately
10 cm

5 cm

Ground
Plane

Coaxial
Port 10 cm

ABC

a b

Fig. 3. (a) A Unit cell monopole antenna. (b) A 10 · 1 monopole array. Dashed lines denote the subdomain interfaces.
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24,000 in each subdomain and about 800,000 for the entire problem. To demonstrate the accuracy of the
method, the active reflection coefficients at two sample ports are calculated as a function of frequency. Port
1 is located at the left-most of the array while Port 5 is located near the center of the array. Fig. 4 shows
the calculated active reflection coefficients at the two sample ports over the frequency range of 550–
950 MHz. The DFDD–TDFEM results are compared with the results obtained by the frequency-domain
FETI [9] for validation. Good agreement between the two numerical methods is found. Fig. 5 shows the mag-
nitude variation of the reflection coefficients across the array from Port 1 to 10 at 750 MHz. It is clearly seen
that a large magnitude variation appears at the two ends of the array due to the well-known edge effect of a
finite array while the magnitude of the central elements remains relatively constant.

Next, we consider two larger square arrays consisting of the same monopoles. The array separation is 10 cm
in both the x- and y-directions. The radiation patterns of a 9 · 9 and 30 · 30 monopole arrays at 750 MHz are
shown in Fig. 6a and b, respectively. Again, the DFDD–TDFEM results are compared with the frequency-
domain FETI results for validation. In both cases, the array is configured for an endfire radiation
(h = 90�). A 90�- and 0�-phase progression is applied to the x- and y-directions, respectively. In the time-
domain simulation, the phase progression is realized by applying an appropriate time delay to the excitation
at different ports. For the 30 · 30 array, the total number of unknowns is approximately 33 million.

The monopole array examples are computed using a serial code on a SGI Altix 350 system with Intel-
Itanium II 1.5 GHz processors. The entire computation consists of two stages. In the preprocessing stage,
the system matrices for each of the nine unit cell subdomains are assembled and pre-factorized sequentially
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and stored in the memory. In the time-marching stage, the fields in each subdomain are updated also in a
sequential manner at each time step using the appropriate factorized matrix. Here we use the sparse direct
solver provided in SGI’s SCSL library for matrix factorizations. The memory requirement and the CPU time
of the DFDD–TDFEM array solver are shown in Figs. 7–9. Since the matrix factorization is performed only
once at the beginning, its CPU time is recorded separately. Fig. 7 shows the peak memory usage of the
DFDD–TDFEM array solver versus array size. When the array size is increased from 1 · 1 to 9 · 9, the mem-
ory requirement of the DFDD–TDFEM array solver is increased only slightly from 681 to 837 MB. This is
because the memory allocated for matrix factorization is independent of the array size. For even larger arrays
(30 · 30 for example), the memory usage starts to increase with the array size. This is because the memory used
by matrix factorization becomes only a small portion of the total memory when the array size becomes very
large and the majority of the memory is allocated to store the unknown coefficients. However, such an increase
is only linear with respect to the number of unknowns. For comparison, the memory required by a conven-
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tional TDFEM is also plotted in Fig. 7 (note that the memory requirements for very large array sizes are pro-
jected data). Since the memory requirement depends on the linear solver, both the direct and iterative solvers
are used in the conventional TDFEM. For the direct solver, we use SGI’s SCSL library. For the iterative sol-
ver, we use the GMRES with an incomplete Cholesky preconditioner. For the 1 · 1 array, it is seen from the
figure that the conventional TDFEM takes even less memory than the DFDD–TDFEM array solver. This is
due to the fact that the DFDD–TDFEM solves for both the electric and magnetic fields while the conventional
method calculates only the electric (or magnetic) field. Thus, the total number of unknowns in the DFDD–
TDFEM solution is doubled. However, when the array size grows larger, the memory requirement for the con-
ventional TDFEM increases quickly. For the 9 · 9 array, for instance, a total memory of 40 GB would be
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required by the conventional TDFEM using a direct solver in contrast to the 837 MB of memory required by
the DFDD–TDFEM array solver. Although the total memory requirement can be reduced by using an iter-
ative solver instead of a direct solver, the memory increase with the problem size is still faster than a linear
increase.

Fig. 8 shows the factorization CPU time versus array size for the DFDD–TDFEM array solver and the
conventional TDFEM. It is expected that the factorization CPU time remains constant for the DFDD–
TDFEM array solver while it shows an O(N2) increase with respect to the number of unknowns for the con-
ventional TDFEM using a direct solver. When an iterative solver is used in the conventional TDFEM, the
preconditioning time is shown instead, which exhibits a slower increase rate than the direct factorization.
Finally, the solving time per time step during the time marching is shown in Fig. 9. Also as expected, the com-
putational complexity of the DFDD–TDFEM array solver is comparable to that of the conventional TDFEM
using a direct solver, both of which are close to O(N). However, the solving time for the conventional TDFEM
using an iterative solver is significantly longer than both of them because of the iterations. Note that the solv-
ing time for an iterative solver varies considerably with different types of preconditioners. Usually, a good pre-
conditioner improves convergence but also requires a large amount of memory and longer perconditioning
time.

The CPU time shown in Figs. 8 and 9 are recorded on a single processor. As we mentioned earlier, one of
the major advantages of the proposed method is that it can be easily implemented as a communication-effi-
cient parallel algorithm. In such a parallel algorithm, each processor is assigned one or several subdomain
problems. Each processor then processes the subdomain problems according to the algorithm described pre-
viously. No global matrix needs to be assembled or solved. During the time marching, each processor first
solves its local subdomain problems and then they are synchronized for communication, which is realized
by exchanging the surface equivalent currents on the inter-processor interfaces. Compared to the solving of
local matrices, the overhead for the inter-processor communication is usually negligible. Thus, a very high par-
allel efficiency can be achieved.

To demonstrate the efficiency of the parallel algorithm, we repeat the calculation of the 30 · 30 monopole
array. Now the computation is distributed on a cluster of Apple Xserver 2.0 GHz G5 processors. Table 2
shows an almost linear decrease of solving time with an increasing number of processors. Since the inter-pro-
cessor communication cost is negligible compared to the solving of local subdomain problems, a high parallel
efficiency mainly depends on a good balance of work load among available processors.



Table 2
Time-marching CPU time per time step versus number of processors for the 30 · 30 monopole array

Number of processors Solving time per step (s)

1 328
25 22
64 6.8

144 2.5

Z. Lou, J.-M. Jin / Journal of Computational Physics 222 (2007) 408–427 421
5.2. Vivaldi antenna array

The Vivaldi antenna is generally recognized as an example of ultra wide-band antennas. Although different
configurations of the Vivaldi antennas exist, all of them contain a gradually flared notch structure to provide
smooth impedance transition to free space. The unit cell configuration considered here was originally
described in [2] and shown in Fig. 10. The model comprises a conducting patch printed on one side of the sub-
strate, which stands vertically above a ground plane. A narrow slotline is cut in the middle of the conducting
patch and is gradually flared into an open mouth at the interface to free space. The antenna is fed by a stripline
from below the ground plane. A small section of coplanar waveguide (CPW) is inserted between the stripline
feed and the slotline of the antenna. The coplanar waveguide consists of two slots, one of which evolves as the
flared slotline and the other ends at a hollow circle cut on the conducting patch. The hollow circle serves as a
wide-band open circuit that contributes to the broadband behavior [29]. The advantage of this design is that
metallization is applied to only one side of the substrate and no via-holes are needed for ground connections.
The various dimensions and parameters of the antenna are given in Fig. 10.

Here we consider a 10 · 10 Vivaldi array which is shown in Fig. 11. The spacing between array elements is
40 mm in both x- and y-directions. The separation corresponds to one half of a wavelength at 3.75 GHz. An
infinite ground plane is assumed and the stripline feed is modeled as a TEM port. The simulation employs 144
subdomains and the total number of unknowns is approximately 3.3 million. The total memory requirement is
1.2 GB and the factorization time and the solving time per time step are 31 s and 20 s, respectively. The cal-
culated E- and H-plane radiation patterns at 3.75 GHz for various scan angles hs and /s are shown in Fig. 12.
It is noted that in all cases the main lobes are steered to the desired angles in both principal planes. The VSWR
parameter calculated at the central port is shown in Fig. 13. A prominent feature of the VSWR curve is the
two sharp peaks occurring at 3.92 GHz and 5.32 GHz when the array is configured for broadside radiation.
Such phenomena, referred to as the impedance anomalies, have been observed in the frequency analysis of
infinite array of Vivaldi antennas [30,31]. The anomalies can be modeled as the excitation of certain resonant
modes in the unit cell cavities, which are formed by electric conducting surfaces on the side walls and a mag-
Fig. 10. (a) Vivaldi antenna fed by a stripline. Dimensions: w = 40 mm, d = 55 mm, R = 5 mm. Substrate thickness h = 1.5 mm,
permittivity �sub = 3.0. Stripline width w1 = 2 mm, permittivity �strip = 1.0. (b) Surface mesh in the feed region.



Fig. 11. A 10 · 10 Vivaldi antenna array.
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netic conducting surface on the open aperture. The resonant frequencies of the cavities can be approximated
by [31]
frm;n ¼
co

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
T x

� �2

þ 2nþ 1

2d

� �2
s

ð53Þ
where Tx is the array spacing in the x-direction and d is the height of the substrate. According to (53), the two
lowest resonant frequencies of the array are f10 = 3.99 GHz and f11 = 5.55 GHz. They are found to be close to
the resonant frequencies obtained by the numerical simulation. The cavity model we employed here does not
take into account the thin dielectric substrate. If the effect of the dielectrics is considered, the resonant frequen-
cies would become slightly lower. Note that the cavity model (53) is valid only when the array elements are
excited identically; hence no obvious resonance pattern is observed when the array is steered to oblique scan
angles.

5.3. Dipole in photonic bandgap structures

PBG structures are periodic structures where electromagnetic propagation of certain bands of frequencies is
prohibited. This interesting property has inspired many optical applications such as the formation of resonant
cavities and guiding structures for optical light. The same EM properties can be observed at microwave fre-
quencies by proper frequency scaling. In microwave regions, the PBG structures are used to suppress surface
waves and enhance antenna performance. Here we analyze the radiation of a small dipole antenna inside a
PBG structure. The PBG structure is formed by a two-dimensional square array of dielectric rods. We assume
the lattice constant of the array is a and choose the radius and length of the rods to by 0.18a and 3a, respec-
tively. The dielectric constant of the rods is set to be 11.56. The dipole is 1.5a in length and placed in parallel
with the dielectric rods. The TM bandgap of the lattice extends from f = 0.302c/a to f = 0.443c/a [32]. Here we
define the TM mode as the mode for which the electric field is parallel to the axis of the dielectric rod. Since the
entire structure is symmetric and the plane of symmetry (see Fig. 14b) is effectively a PEC plane for the TM
modes, we need to simulate only the upper-half of the computation domain and place a PEC ground plane on
the plane of symmetry.

To observe the bandgap properties of the structure, we first simulate the radiation of a dipole inside a PBG
cavity. The cavity, shown in Fig. 14a, is formed by removing the central rod in a 9 · 9 array. A dipole antenna



Fig. 14. A 9 · 9 array of dielectric rods with the central rod replaces by a dipole antenna. (a) Top view. (b) Side view.

Fig. 15. Magnetic field distribution in the plane of symmetry for various frequencies: (a) f1 = 0.25c/a; (b) f2 = 0.35c/a; (c) f3 = 0.5c/a.
(d) Magnitude of the reflection coefficient at the monopole port as a function of frequency.
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Fig. 16. A PBG waveguide formed by a 12 · 12 array of dielectric rods.
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is then placed at the center of the array (which becomes a monopole when the plane of symmetry is modelled
as a PEC plane). The antenna launches a modulated Gaussian pulse with a central frequency of f0 = 0.4c/a
into the PBG. We then calculate the magnetic field distribution in the plane of symmetry, shown in
Fig. 15a–c, for three frequencies f1 = 0.25c/a, f2 = 0.35c/a, and f3 = 0.5c/a. Since f2 falls inside the range of
Fig. 17. Ez-field distribution in the plane of symmetry at (a) f1 = 0.35c/a; (b) f2 = 0.5c/a. (c) Normalized field amplitude at a sample point
in the waveguide.
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the bandgap, the field is confined to the vicinity of the cavity and TM11 cavity mode distribution can be clearly
seen from Fig. 15b. While in the case of f1 and f3, which lie outside the bandgap, the electromagnetic fields are
allowed to propagate outside the cavity and thus the field distributions extend the entire computation domain,
as seen in Fig. 15a and c. The bandgap can be seen more clearly in Fig. 15d where the reflection coefficient at
the monopole port is plotted as a function of frequency.

As a second example, we simulate the radiation of the dipole inside a PBG waveguide. A TM mode wave-
guide can be created by removing rows or columns of elements from the dielectric rod array. Here we consider
a 12 · 12 array with a total of 17 rods removed to create a double-bended waveguide (shown in Fig. 16). The
dipole is placed at the upper-left end of the waveguide and again launches a broadband pulse into the wave-
guide. We plot the Ez field pattern across the plane of symmetry in Fig. 17a for f1 = 0.35c/a and Fig. 17b for
f2 = 0.5c/a. In Fig. 17a, where the corresponding frequency falls inside the bangap, the propagation of the
TM1 mode along the PBG waveguide is clearly observed, although the magnitude of the propagating mode
is reduced at the end of the waveguide due to the reflection losses at the two junctures. In Fig. 17b, however,
no obvious guiding phenomenon is observed. Since at this frequency the fields are not confined to the wave-
guide, the field pattern is merely the result of field scattered by the dielectric rods. Fig. 17c shows the field
amplitude as a function of frequency at a sample point P in the waveguide (see Fig. 16), which exhibits a sharp
bandgap pattern.

6. Conclusion

In this paper, we proposed using the DFDD–TDFEM for the efficient broadband simulation of large finite
arrays. The domain decomposition allows breaking the original computation domain into smaller subdo-
mains, each of which contains a single array element. Then the electromagnetic fields are solved locally inside
each subdomain and the fields in adjacent subdomains are related by the surface currents on the subdomain
interfaces. By doing so, the original task of solving a large FEM system is avoided. The sizes of the subdomain
problems are usually small enough to allow the use of a sparse direct solver. Due to the repetition in the array
geometry, only a few subdomain matrices need to be factorized. These factorized matrices are then stored in
memory and used repeatedly during the time marching. Since the solving of the subdomain problems at each
time step involves only back-substitution, the entire time-marching process is highly efficient.

The proposed DFDD–TDFEM algorithm has several distinct features. First, unlike many other domain-
decomposition methods, the proposed method does not require solving a large global problem. All the oper-
ations involves in the algorithm are local operations. This is especially advantageous for time-domain simu-
lations where a linear system needs to be solved repeatedly at each time step. As a result, the algorithm is
highly efficient and scalable, especially for large-scale computations.

Second, the proposed method is a specialized array solver that fully exploits the repetition of geometry in a
typical array configuration. By breaking the original array into identical subdomains and explicitly reusing the
identical system matrices, the redundancy in the matrix factorization is removed. As a result, the memory
requirement and the CPU time are significantly reduced. The reduction is most dramatic when the array size
is large. Although this specialized array solver is not as versatile as a general DFDD algorithm, it is highly
efficient for large finite array problems.

Finally, the stability condition of the DFDD–TDFEM algorithm is more relaxed compared to the FDTD
and the explicit TDFEM. Instead of the smallest element in the computation domain, the stability condition
here depends on the discretization local to the subdomain interfaces. This property is especially beneficial for
array configurations where small geometrical features, such as antenna feeds, are confined locally inside the
unit cell. In such problems, a much dense spatial discretization can be applied to the local regions without
significantly sacrificing the stability condition.
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